βοΈ GemiNews ποΈ
(dev)
π‘
π° Articles
π·οΈ Tags
π§ Queries
π Graphs
βοΈ Stats
ππ» Assistant
π¬
ποΈ
Demo 1: Embeddings + Recommendation
Demo 2: Bella RAGa
Demo 3: NewRetriever
Demo 4: Assistant function calling
Editing article
Title
Summary
Content
<strong class="release-note-product-title">Anthos clusters on AWS</strong> <h3>Announcement</h3> <p>You can now launch clusters with the following Kubernetes versions. Click on the following links to see the release notes associated with these patches:</p> <ul> <li><a href="https://cloud.google.com/anthos/clusters/docs/multi-cloud/aws/reference/supported-versions#1287-gke1700">1.28.7-gke.1700</a></li> <li><a href="https://cloud.google.com/anthos/clusters/docs/multi-cloud/aws/reference/supported-versions#12711-gke1600">1.27.11-gke.1600</a></li> <li><a href="https://cloud.google.com/anthos/clusters/docs/multi-cloud/aws/reference/supported-versions#12614-gke1500">1.26.14-gke.1500</a></li> </ul> <strong class="release-note-product-title">Anthos clusters on Azure</strong> <h3>Announcement</h3> <p>You can now launch clusters with the following Kubernetes versions. Click on the following links to see the release notes associated with these patches:</p> <ul> <li><a href="https://cloud.google.com/anthos/clusters/docs/multi-cloud/azure/reference/supported-versions#1287-gke1700">1.28.7-gke.1700</a></li> <li><a href="https://cloud.google.com/anthos/clusters/docs/multi-cloud/azure/reference/supported-versions#12711-gke1600">1.27.11-gke.1600</a></li> <li><a href="https://cloud.google.com/anthos/clusters/docs/multi-cloud/azure/reference/supported-versions#12614-gke1500">1.26.14-gke.1500</a></li> </ul> <strong class="release-note-product-title">BigQuery</strong> <h3>Feature</h3> <p>The <a href="https://cloud.google.com/bigquery/docs/materialized-views-create#non-incremental"><code>allow_non_incremental_definition</code> option</a> and <a href="https://cloud.google.com/bigquery/docs/materialized-views-create#max_staleness"><code>max_staleness</code> option</a> for materialized views are now <a href="https://cloud.google.com/products/#product-launch-stages">generally available (GA)</a>. The <code>allow_non_incremental_definition</code> option supports an expanded range of SQL queries to create materialized views, and the <code>max_staleness</code> option provides consistently high performance with controlled costs when processing large, frequently changing datasets.</p> <h3>Feature</h3> <p>You can now perform <a href="https://cloud.google.com/bigquery/docs/model-monitoring-overview">model monitoring</a> in BigQuery ML. The following model monitoring functions are now in <a href="https://cloud.google.com/products/#product-launch-stages">preview</a>:</p> <ul> <li><a href="https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-describe-data"><code>ML.DESCRIBE_DATA</code></a>: compute descriptive statistics for a set of training or serving data.</li> <li><a href="https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-validate-data-skew"><code>ML.VALIDATE_DATA_SKEW</code></a>: compute the statistics for a set of serving data, and then compare them to the statistics for the data used to train a BigQuery ML model in order to identify anomalous differences between the two data sets.</li> <li><a href="https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-validate-data-drift"><code>ML.VALIDATE_DATA_DRIFT</code></a>: compute and compare the statistics for two sets of serving data in order to identify anomalous differences between the two data sets.</li> <li><a href="https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-tfdv-describe"><code>ML.TFDV_DESCRIBE</code></a>: compute fine-grained descriptive statistics for a set of training or serving data. This function provides the same behavior as the <a href="https://www.tensorflow.org/tfx/data_validation/api_docs/python/tfdv/generate_statistics_from_csv">TensorFlow <code>tfdv.generate_statistics_from_csv</code> API</a>.</li> <li><a href="https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-tfdv-validate"><code>ML.TFDV_VALIDATE</code></a>: compute and compare the statistics for training and serving data, or two sets of serving data, in order to identify anomalous differences between the two data sets. This function provides the same behavior as the <a href="https://www.tensorflow.org/tfx/data_validation/api_docs/python/tfdv/validate_statistics">TensorFlow <code>validate_statistics</code> API</a>.</li> </ul> <h3>Feature</h3> <p><a href="https://cloud.google.com/bigquery/docs/data-clean-rooms">BigQuery data clean rooms</a> with analysis rules and enhanced usage metrics are now <a href="https://cloud.google.com/products/#product-launch-stages">generally available (GA)</a>. Data clean rooms provide a security-enhanced and privacy-preserving environment for multiple parties to share and augment data without moving or revealing the underlying data. </p> <h3>Feature</h3> <p><a href="https://cloud.google.com/bigquery/docs/analysis-rules#join_restriction_rules">Join restrictions</a>, <a href="https://cloud.google.com/bigquery/docs/analysis-rules#list_overlap_rules">list overlap</a>, <a href="https://cloud.google.com/bigquery/docs/analysis-rules#dp_analysis_rules">differential privacy with privacy budgeting</a>, and <a href="https://cloud.google.com/bigquery/docs/analysis-rules#agg_analysis_rules">aggregation thresholding</a> are now <a href="https://cloud.google.com/products/#product-launch-stages">generally available (GA)</a> and enforceable in BigQuery data clean rooms using analysis rules.</p> <strong class="release-note-product-title">Cloud Data Fusion</strong> <h3>Changed</h3> <p>Cloud Data Fusion is available in the <code>africa-south1</code> region. For more information, see <a href="https://cloud.google.com/data-fusion/pricing">Pricing</a>.</p> <strong class="release-note-product-title">Compute Engine</strong> <h3>Feature</h3> <p><strong>Generally available</strong>: Simplify block storage management for Compute Engine instances with Hyperdisk Storage Pools. A Hyperdisk Storage Pool is a pre-purchased collection of disk capacity, throughput, and IOPS which you can then provision to your applications as needed. By managing disks in aggregate, you can save costs while achieving expected capacity and performance growth. For more information, see <a href="https://cloud.google.com/compute/docs/disks/storage-pools">About Hyperdisk Storage Pools</a>.</p> <strong class="release-note-product-title">Dialogflow</strong> <h3>Feature</h3> <p>Vertex AI Conversation: You can now create a <a href="https://cloud.google.com/dialogflow/vertex/docs/concept/data-store#languages">data store in one language</a> that is connected to an agent that uses different languages.</p> <strong class="release-note-product-title">Google Kubernetes Engine</strong> <h3>Security</h3> <p>A Denial-of-Service (DoS) vulnerability (CVE-2023-45288) was recently discovered in multiple implementations of the HTTP/2 protocol, including the golang HTTP server used by Kubernetes. The vulnerability could lead to a DoS of the Google Kubernetes Engine (GKE) control plane.</p> <p>For more information, see the <a href="https://cloud.google.com/anthos/clusters/docs/security-bulletins#gcp-2024-022">GCP-2024-022 security bulletin</a>.</p>
Author
Link
Published date
Image url
Feed url
Guid
Hidden blurb
--- !ruby/object:Feedjira::Parser::AtomEntry title_type: title: April 04, 2024 entry_id: tag:google.com,2016:gcp-release-notes#April_04_2024 updated: &1 2024-04-04 07:00:00.000000000 Z links: - https://cloud.google.com/release-notes#April_04_2024 content: "<strong class=\"release-note-product-title\">Anthos clusters on AWS</strong>\n<h3>Announcement</h3>\n<p>You can now launch clusters with the following Kubernetes versions. Click on the following links to see the release notes associated with these patches:</p>\n\n<ul>\n<li><a href=\"https://cloud.google.com/anthos/clusters/docs/multi-cloud/aws/reference/supported-versions#1287-gke1700\">1.28.7-gke.1700</a></li>\n<li><a href=\"https://cloud.google.com/anthos/clusters/docs/multi-cloud/aws/reference/supported-versions#12711-gke1600\">1.27.11-gke.1600</a></li>\n<li><a href=\"https://cloud.google.com/anthos/clusters/docs/multi-cloud/aws/reference/supported-versions#12614-gke1500\">1.26.14-gke.1500</a></li>\n</ul>\n<strong class=\"release-note-product-title\">Anthos clusters on Azure</strong>\n<h3>Announcement</h3>\n<p>You can now launch clusters with the following Kubernetes versions. Click on the following links to see the release notes associated with these patches:</p>\n\n<ul>\n<li><a href=\"https://cloud.google.com/anthos/clusters/docs/multi-cloud/azure/reference/supported-versions#1287-gke1700\">1.28.7-gke.1700</a></li>\n<li><a href=\"https://cloud.google.com/anthos/clusters/docs/multi-cloud/azure/reference/supported-versions#12711-gke1600\">1.27.11-gke.1600</a></li>\n<li><a href=\"https://cloud.google.com/anthos/clusters/docs/multi-cloud/azure/reference/supported-versions#12614-gke1500\">1.26.14-gke.1500</a></li>\n</ul>\n<strong class=\"release-note-product-title\">BigQuery</strong>\n<h3>Feature</h3>\n<p>The <a href=\"https://cloud.google.com/bigquery/docs/materialized-views-create#non-incremental\"><code>allow_non_incremental_definition</code> option</a> and <a href=\"https://cloud.google.com/bigquery/docs/materialized-views-create#max_staleness\"><code>max_staleness</code> option</a> for materialized views are now <a href=\"https://cloud.google.com/products/#product-launch-stages\">generally available (GA)</a>. The <code>allow_non_incremental_definition</code> option supports an expanded range of SQL queries to create materialized views, and the <code>max_staleness</code> option provides consistently high performance with controlled costs when processing large, frequently changing datasets.</p>\n<h3>Feature</h3>\n<p>You can now perform\n<a href=\"https://cloud.google.com/bigquery/docs/model-monitoring-overview\">model monitoring</a> in BigQuery ML. The following model monitoring functions are now in\n<a href=\"https://cloud.google.com/products/#product-launch-stages\">preview</a>:</p>\n\n<ul>\n<li><a href=\"https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-describe-data\"><code>ML.DESCRIBE_DATA</code></a>:\ncompute descriptive statistics for a set of training or serving data.</li>\n<li><a href=\"https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-validate-data-skew\"><code>ML.VALIDATE_DATA_SKEW</code></a>:\ncompute the statistics for a set of serving data, and then compare them to\nthe statistics for the data used to train a BigQuery ML model in order to\nidentify anomalous differences between the two data sets.</li>\n<li><a href=\"https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-validate-data-drift\"><code>ML.VALIDATE_DATA_DRIFT</code></a>:\ncompute and compare the statistics for two sets of serving data in order to\nidentify anomalous differences between the two data sets.</li>\n<li><a href=\"https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-tfdv-describe\"><code>ML.TFDV_DESCRIBE</code></a>:\ncompute fine-grained descriptive statistics for a set of training or\nserving data. This function provides the same behavior as the\n<a href=\"https://www.tensorflow.org/tfx/data_validation/api_docs/python/tfdv/generate_statistics_from_csv\">TensorFlow <code>tfdv.generate_statistics_from_csv</code> API</a>.</li>\n<li><a href=\"https://cloud.google.com/bigquery/docs/reference/standard-sql/bigqueryml-syntax-tfdv-validate\"><code>ML.TFDV_VALIDATE</code></a>:\ncompute and compare the statistics for training and serving data, or two\nsets of serving data, in order to identify anomalous differences between\nthe two data sets. This function provides the same behavior as the\n<a href=\"https://www.tensorflow.org/tfx/data_validation/api_docs/python/tfdv/validate_statistics\">TensorFlow <code>validate_statistics</code> API</a>.</li>\n</ul>\n<h3>Feature</h3>\n<p><a href=\"https://cloud.google.com/bigquery/docs/data-clean-rooms\">BigQuery data clean rooms</a> with analysis rules and enhanced usage metrics are now <a href=\"https://cloud.google.com/products/#product-launch-stages\">generally available (GA)</a>. Data clean rooms provide a security-enhanced and privacy-preserving environment for multiple parties to share and augment data without moving or revealing the underlying data. </p>\n<h3>Feature</h3>\n<p><a href=\"https://cloud.google.com/bigquery/docs/analysis-rules#join_restriction_rules\">Join restrictions</a>, <a href=\"https://cloud.google.com/bigquery/docs/analysis-rules#list_overlap_rules\">list overlap</a>, <a href=\"https://cloud.google.com/bigquery/docs/analysis-rules#dp_analysis_rules\">differential privacy with privacy budgeting</a>, and <a href=\"https://cloud.google.com/bigquery/docs/analysis-rules#agg_analysis_rules\">aggregation thresholding</a> are now <a href=\"https://cloud.google.com/products/#product-launch-stages\">generally available (GA)</a> and enforceable in BigQuery data clean rooms using analysis rules.</p>\n<strong class=\"release-note-product-title\">Cloud Data Fusion</strong>\n<h3>Changed</h3>\n<p>Cloud Data Fusion is available in the <code>africa-south1</code> region. For more information, see <a href=\"https://cloud.google.com/data-fusion/pricing\">Pricing</a>.</p>\n<strong class=\"release-note-product-title\">Compute Engine</strong>\n<h3>Feature</h3>\n<p><strong>Generally available</strong>: Simplify block storage management for Compute Engine instances with Hyperdisk Storage Pools. A Hyperdisk Storage Pool is a pre-purchased collection of disk capacity, throughput, and IOPS which you can then provision to your applications as needed. By managing disks in aggregate, you can save costs while achieving expected capacity and performance growth. For more information, see <a href=\"https://cloud.google.com/compute/docs/disks/storage-pools\">About Hyperdisk Storage Pools</a>.</p>\n<strong class=\"release-note-product-title\">Dialogflow</strong>\n<h3>Feature</h3>\n<p>Vertex AI Conversation: You can now create a <a href=\"https://cloud.google.com/dialogflow/vertex/docs/concept/data-store#languages\">data store in one language</a> that is connected to an agent that uses different languages.</p>\n<strong class=\"release-note-product-title\">Google Kubernetes Engine</strong>\n<h3>Security</h3>\n<p>A Denial-of-Service (DoS) vulnerability (CVE-2023-45288) was recently discovered in multiple implementations of the HTTP/2 protocol, including the golang HTTP server used by Kubernetes. The vulnerability could lead to a DoS of the Google Kubernetes Engine (GKE) control plane.</p>\n\n<p>For more information, see the <a href=\"https://cloud.google.com/anthos/clusters/docs/security-bulletins#gcp-2024-022\">GCP-2024-022 security bulletin</a>.</p>\n\n " published: *1 carlessian_info: news_filer_version: 2 newspaper: GCP latest releases macro_region: Technology rss_fields: - title_type - title - entry_id - updated - links - content - published categories: [] url: https://cloud.google.com/release-notes#April_04_2024
Language
Active
Ricc internal notes
Imported via /usr/local/google/home/ricc/git/gemini-news-crawler/webapp/db/seeds.d/import-feedjira.rb on 2024-04-05 09:24:40 +0200. Content is EMPTY here. Entried: title_type,title,entry_id,updated,links,content,published. TODO add Newspaper: filename = /usr/local/google/home/ricc/git/gemini-news-crawler/webapp/db/seeds.d/../../../crawler/out/feedjira/Technology/GCP latest releases/2024-04-04-April_04,_2024-v2.yaml
Ricc source
Show this article
Back to articles