โ๏ธ GemiNews ๐๏ธ
(dev)
๐ก
๐ฐ Articles
๐ท๏ธ Tags
๐ง Queries
๐ Graphs
โ๏ธ Stats
๐๐ป Assistant
๐ฌ
๐๏ธ
Demo 1: Embeddings + Recommendation
Demo 2: Bella RAGa
Demo 3: NewRetriever
Demo 4: Assistant function calling
Editing article
Title
Summary
<div class="block-paragraph_advanced"><p><span style="vertical-align: baseline;">We are excited to announce that differential privacy enforcement with privacy budgeting is now available in </span><a href="https://cloud.google.com/bigquery/docs/data-clean-rooms"><span style="text-decoration: underline; vertical-align: baseline;">BigQuery data clean rooms</span></a><span style="vertical-align: baseline;"> to help organizations prevent data from being reidentified when it is shared.</span></p> <p><span style="vertical-align: baseline;">Differential privacy is an anonymization technique that limits the personal information that is revealed in a query output. Differential privacy is considered to be one of the strongest privacy protections that exists today because it:</span></p> <ul> <li role="presentation"><span style="vertical-align: baseline;">is provably private</span></li> <li role="presentation"><span style="vertical-align: baseline;">supports multiple differentially private queries on the same dataset</span></li> <li role="presentation"><span style="vertical-align: baseline;">can be applied to many data types</span></li> </ul> <p><span style="vertical-align: baseline;">Differential privacy is </span><a href="https://iabtechlab.com/wp-content/uploads/2023/11/Differential-Privacy-Guidance_PUBLIC-COMMENT_11152023.pdf" rel="noopener" target="_blank"><span style="text-decoration: underline; vertical-align: baseline;">used by advertisers</span></a><span style="vertical-align: baseline;">, healthcare companies, and education companies to perform analysis without exposing individual records. It is also used by public sector organizations that comply with the General Data Protection Regulation (GDPR), the Health Insurance Portability and Accountability Act (HIPAA), the Family Educational Rights and Privacy Act (FERPA), and the California Consumer Privacy Act (CCPA).</span></p> <h3><span style="vertical-align: baseline;">What can I do with differential privacy?</span></h3> <p><span style="vertical-align: baseline;">With differential privacy, you can:</span></p> <ul> <li role="presentation"><span style="vertical-align: baseline;">protect individual records from re-identification without moving or copying your data</span></li> <li role="presentation"><span style="vertical-align: baseline;">protect against privacy leak and re-identification</span></li> <li role="presentation"><span style="vertical-align: baseline;">use one of the anonymization standards most favored by regulators</span></li> </ul> <p><span style="vertical-align: baseline;">BigQuery customers can use differential privacy to:</span></p> <ul> <li role="presentation"><span style="vertical-align: baseline;">share data in BigQuery data clean rooms while preserving privacy</span></li> <li role="presentation"><span style="vertical-align: baseline;">anonymize query results on AWS and Azure data with BigQuery Omni</span></li> <li role="presentation"><span style="vertical-align: baseline;">share anonymized results with Apache Spark stored procedures and Dataform pipelines so they can be consumed by other applications</span></li> <li role="presentation"><span style="vertical-align: baseline;">enhance differential privacy implementations with technology from Google Cloud partners </span><a href="http://gretel.ai" rel="noopener" target="_blank"><span style="text-decoration: underline; vertical-align: baseline;">Gretel.ai</span></a><span style="vertical-align: baseline;"> and </span><a href="https://www.tmlt.dev/" rel="noopener" target="_blank"><span style="text-decoration: underline; vertical-align: baseline;">Tumult Analytics</span></a></li> <li role="presentation"><span style="vertical-align: baseline;">call frameworks like </span><a href="http://pipelinedp.io" rel="noopener" target="_blank"><span style="text-decoration: underline; vertical-align: baseline;">PipelineDP.io</span></a></li> </ul> <h3><span style="vertical-align: baseline;">So what is BigQuery differential privacy exactly?</span></h3> <p><span style="vertical-align: baseline;">BigQuery differential privacy is three capabilities:</span></p> <ul> <li aria-level="1" style="list-style-type: disc; vertical-align: baseline;"> <p role="presentation"><strong style="vertical-align: baseline;">Differential privacy in GoogleSQL</strong><span style="vertical-align: baseline;"> โ You can use </span><a href="https://cloud.google.com/bigquery/docs/differential-privacy"><span style="text-decoration: underline; vertical-align: baseline;">differential privacy aggregate functions</span></a><span style="vertical-align: baseline;"> directly in GoogleSQL</span></p> </li> <li aria-level="1" style="list-style-type: disc; vertical-align: baseline;"> <p role="presentation"><strong style="vertical-align: baseline;">Differential privacy enforcement in BigQuery data clean rooms </strong><span style="vertical-align: baseline;">โ You can apply a </span><a href="https://cloud.google.com/bigquery/docs/analysis-rules#dp_privacy_policy"><span style="text-decoration: underline; vertical-align: baseline;">differential privacy analysis rule</span></a><span style="vertical-align: baseline;"> to enforce that all queries on your shared data use differential privacy in GoogleSQL with the parameters that you specify</span></p> </li> <li role="presentation"><strong style="vertical-align: baseline;">Parameter-driven privacy budgeting in BigQuery data clean rooms</strong><span style="vertical-align: baseline;"> โ When you apply a differential privacy analysis rule, you also set a privacy budget to limit the data that is revealed when your shared data is queried. BigQuery uses parameter-driven privacy budgeting to give you more granular control over your data than query thresholds do and to prevent further queries on that data when the budget is exhausted.</span></li> </ul> <h3><strong style="vertical-align: baseline;">BigQuery differential privacy enforcement in action</strong></h3> <p><span style="vertical-align: baseline;">Hereโs how to enable the differential privacy analysis rule and configure a privacy budget when you add data to a BigQuery data clean room.</span></p></div> <div class="block-image_full_width"> <div class="article-module h-c-page"> <div class="h-c-grid"> <figure class="article-image--large h-c-grid__col h-c-grid__col--6 h-c-grid__col--offset-3 " > <img src="https://storage.googleapis.com/gweb-cloudblog-publish/images/figure_1.max-1000x1000.png" alt="figure 1"> </a> </figure> </div> </div> </div> <div class="block-paragraph"><p data-block-key="s1awi">Subscribers of that clean room must then use differential privacy to query your shared data.</p></div> <div class="block-image_full_width"> <div class="article-module h-c-page"> <div class="h-c-grid"> <figure class="article-image--large h-c-grid__col h-c-grid__col--6 h-c-grid__col--offset-3 " > <img src="https://storage.googleapis.com/gweb-cloudblog-publish/images/2_NP4i0TM.max-1000x1000.png" alt="figure 2"> </a> </figure> </div> </div> </div> <div class="block-paragraph"><p data-block-key="s1awi">Subscribers of that clean room cannot query your shared data once the privacy budget is exhausted.</p></div> <div class="block-image_full_width"> <div class="article-module h-c-page"> <div class="h-c-grid"> <figure class="article-image--large h-c-grid__col h-c-grid__col--6 h-c-grid__col--offset-3 " > <img src="https://storage.googleapis.com/gweb-cloudblog-publish/original_images/3_gO4XfWR.png" alt="figure 3"> </a> </figure> </div> </div> </div> <div class="block-paragraph_advanced"><h3><strong style="vertical-align: baseline;">Get started with BigQuery differential privacy</strong></h3> <p><span style="vertical-align: baseline;">BigQuery differential privacy is configured when a data owner or contributor shares data in a BigQuery data clean room. A data owner or contributor can share data using any compute pricing model and does not incur compute charges when a subscriber queries that data. Subscribers of a data clean room incur compute charges when querying shared data that is protected with a differential privacy analysis rule. Those subscribers are required to use on-demand pricing (charged per TB) or the </span><a href="https://cloud.google.com/bigquery/docs/editions-intro"><span style="text-decoration: underline; vertical-align: baseline;">Enterprise Plus edition</span></a><span style="vertical-align: baseline;"> (charged per slot hour).</span></p> <p><span style="vertical-align: baseline;">Create a </span><a href="https://pantheon.corp.google.com/bigquery/analytics-hub/exchanges" rel="noopener" target="_blank"><span style="text-decoration: underline; vertical-align: baseline;">clean room where all queries are protected with differential privacy </span></a><span style="vertical-align: baseline;">today and </span><a href="https://issuetracker.google.com/issues/new?component=187149&template=1162659&pli=1" rel="noopener" target="_blank"><span style="text-decoration: underline; vertical-align: baseline;">let us know</span></a><span style="vertical-align: baseline;"> where you need help.</span></p></div> <div class="block-related_article_tout"> <div class="uni-related-article-tout h-c-page"> <section class="h-c-grid"> <a href="https://cloud.google.com/blog/products/data-analytics/bigquery-data-clean-rooms-now-generally-available/" data-analytics='{ "event": "page interaction", "category": "article lead", "action": "related article - inline", "label": "article: {slug}" }' class="uni-related-article-tout__wrapper h-c-grid__col h-c-grid__col--8 h-c-grid__col-m--6 h-c-grid__col-l--6 h-c-grid__col--offset-2 h-c-grid__col-m--offset-3 h-c-grid__col-l--offset-3 uni-click-tracker"> <div class="uni-related-article-tout__inner-wrapper"> <p class="uni-related-article-tout__eyebrow h-c-eyebrow">Related Article</p> <div class="uni-related-article-tout__content-wrapper"> <div class="uni-related-article-tout__image-wrapper"> <div class="uni-related-article-tout__image" style="background-image: url('')"></div> </div> <div class="uni-related-article-tout__content"> <h4 class="uni-related-article-tout__header h-has-bottom-margin">Privacy-preserving data sharing now generally available with BigQuery data clean rooms</h4> <p class="uni-related-article-tout__body">Now GA, BigQuery data clean rooms has a new data contributor and subscriber experience, join restrictions, new analysis rules, usage metr...</p> <div class="cta module-cta h-c-copy uni-related-article-tout__cta muted"> <span class="nowrap">Read Article <svg class="icon h-c-icon" role="presentation"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#mi-arrow-forward"></use> </svg> </span> </div> </div> </div> </div> </a> </section> </div> </div>
Content
empty
Author
Link
Published date
Image url
Feed url
Guid
Hidden blurb
--- !ruby/object:Feedjira::Parser::RSSEntry published: 2024-04-05 15:59:00.000000000 Z carlessian_info: news_filer_version: 2 newspaper: Google Cloud Blog macro_region: Technology entry_id: !ruby/object:Feedjira::Parser::GloballyUniqueIdentifier guid: https://cloud.google.com/blog/products/data-analytics/differential-privacy-enforcement-in-bigquery-data-clean-rooms/ title: Get started with differential privacy and privacy budgeting in BigQuery data clean rooms categories: - Data Analytics summary: "<div class=\"block-paragraph_advanced\"><p><span style=\"vertical-align: baseline;\">We are excited to announce that differential privacy enforcement with privacy budgeting is now available in </span><a href=\"https://cloud.google.com/bigquery/docs/data-clean-rooms\"><span style=\"text-decoration: underline; vertical-align: baseline;\">BigQuery data clean rooms</span></a><span style=\"vertical-align: baseline;\"> to help organizations prevent data from being reidentified when it is shared.</span></p>\n<p><span style=\"vertical-align: baseline;\">Differential privacy is an anonymization technique that limits the personal information that is revealed in a query output. Differential privacy is considered to be one of the strongest privacy protections that exists today because it:</span></p>\n<ul>\n<li role=\"presentation\"><span style=\"vertical-align: baseline;\">is provably private</span></li>\n<li role=\"presentation\"><span style=\"vertical-align: baseline;\">supports multiple differentially private queries on the same dataset</span></li>\n<li role=\"presentation\"><span style=\"vertical-align: baseline;\">can be applied to many data types</span></li>\n</ul>\n<p><span style=\"vertical-align: baseline;\">Differential privacy is </span><a href=\"https://iabtechlab.com/wp-content/uploads/2023/11/Differential-Privacy-Guidance_PUBLIC-COMMENT_11152023.pdf\" rel=\"noopener\" target=\"_blank\"><span style=\"text-decoration: underline; vertical-align: baseline;\">used by advertisers</span></a><span style=\"vertical-align: baseline;\">, healthcare companies, and education companies to perform analysis without exposing individual records. It is also used by public sector organizations that comply with the General Data Protection Regulation (GDPR), the Health Insurance Portability and Accountability Act (HIPAA), the Family Educational Rights and Privacy Act (FERPA), and the California Consumer Privacy Act (CCPA).</span></p>\n<h3><span style=\"vertical-align: baseline;\">What can I do with differential privacy?</span></h3>\n<p><span style=\"vertical-align: baseline;\">With differential privacy, you can:</span></p>\n<ul>\n<li role=\"presentation\"><span style=\"vertical-align: baseline;\">protect individual records from re-identification without moving or copying your data</span></li>\n<li role=\"presentation\"><span style=\"vertical-align: baseline;\">protect against privacy leak and re-identification</span></li>\n<li role=\"presentation\"><span style=\"vertical-align: baseline;\">use one of the anonymization standards most favored by regulators</span></li>\n</ul>\n<p><span style=\"vertical-align: baseline;\">BigQuery customers can use differential privacy to:</span></p>\n<ul>\n<li role=\"presentation\"><span style=\"vertical-align: baseline;\">share data in BigQuery data clean rooms while preserving privacy</span></li>\n<li role=\"presentation\"><span style=\"vertical-align: baseline;\">anonymize query results on AWS and Azure data with BigQuery Omni</span></li>\n<li role=\"presentation\"><span style=\"vertical-align: baseline;\">share anonymized results with Apache Spark stored procedures and Dataform pipelines so they can be consumed by other applications</span></li>\n<li role=\"presentation\"><span style=\"vertical-align: baseline;\">enhance differential privacy implementations with technology from Google Cloud partners </span><a href=\"http://gretel.ai\" rel=\"noopener\" target=\"_blank\"><span style=\"text-decoration: underline; vertical-align: baseline;\">Gretel.ai</span></a><span style=\"vertical-align: baseline;\"> and </span><a href=\"https://www.tmlt.dev/\" rel=\"noopener\" target=\"_blank\"><span style=\"text-decoration: underline; vertical-align: baseline;\">Tumult Analytics</span></a></li>\n<li role=\"presentation\"><span style=\"vertical-align: baseline;\">call frameworks like </span><a href=\"http://pipelinedp.io\" rel=\"noopener\" target=\"_blank\"><span style=\"text-decoration: underline; vertical-align: baseline;\">PipelineDP.io</span></a></li>\n</ul>\n<h3><span style=\"vertical-align: baseline;\">So what is BigQuery differential privacy exactly?</span></h3>\n<p><span style=\"vertical-align: baseline;\">BigQuery differential privacy is three capabilities:</span></p>\n<ul>\n<li aria-level=\"1\" style=\"list-style-type: disc; vertical-align: baseline;\">\n<p role=\"presentation\"><strong style=\"vertical-align: baseline;\">Differential privacy in GoogleSQL</strong><span style=\"vertical-align: baseline;\"> โ You can use </span><a href=\"https://cloud.google.com/bigquery/docs/differential-privacy\"><span style=\"text-decoration: underline; vertical-align: baseline;\">differential privacy aggregate functions</span></a><span style=\"vertical-align: baseline;\"> directly in GoogleSQL</span></p>\n</li>\n<li aria-level=\"1\" style=\"list-style-type: disc; vertical-align: baseline;\">\n<p role=\"presentation\"><strong style=\"vertical-align: baseline;\">Differential privacy enforcement in BigQuery data clean rooms </strong><span style=\"vertical-align: baseline;\">โ You can apply a </span><a href=\"https://cloud.google.com/bigquery/docs/analysis-rules#dp_privacy_policy\"><span style=\"text-decoration: underline; vertical-align: baseline;\">differential privacy analysis rule</span></a><span style=\"vertical-align: baseline;\"> to enforce that all queries on your shared data use differential privacy in GoogleSQL with the parameters that you specify</span></p>\n</li>\n<li role=\"presentation\"><strong style=\"vertical-align: baseline;\">Parameter-driven privacy budgeting in BigQuery data clean rooms</strong><span style=\"vertical-align: baseline;\"> โ When you apply a differential privacy analysis rule, you also set a privacy budget to limit the data that is revealed when your shared data is queried. BigQuery uses parameter-driven privacy budgeting to give you more granular control over your data than query thresholds do and to prevent further queries on that data when the budget is exhausted.</span></li>\n</ul>\n<h3><strong style=\"vertical-align: baseline;\">BigQuery differential privacy enforcement in action</strong></h3>\n<p><span style=\"vertical-align: baseline;\">Hereโs how to enable the differential privacy analysis rule and configure a privacy budget when you add data to a BigQuery data clean room.</span></p></div>\n<div class=\"block-image_full_width\">\n\n\n\n\n\n\n \ \n <div class=\"article-module h-c-page\">\n <div class=\"h-c-grid\">\n \ \n\n <figure class=\"article-image--large\n \n \n h-c-grid__col\n \ h-c-grid__col--6 h-c-grid__col--offset-3\n \n \n \"\n \ >\n\n \n \n \n <img\n src=\"https://storage.googleapis.com/gweb-cloudblog-publish/images/figure_1.max-1000x1000.png\"\n \ \n alt=\"figure 1\">\n \n </a>\n \n </figure>\n\n \ \n </div>\n </div>\n \n\n\n\n\n</div>\n<div class=\"block-paragraph\"><p data-block-key=\"s1awi\">Subscribers of that clean room must then use differential privacy to query your shared data.</p></div>\n<div class=\"block-image_full_width\">\n\n\n\n\n\n\n \ \n <div class=\"article-module h-c-page\">\n <div class=\"h-c-grid\">\n \ \n\n <figure class=\"article-image--large\n \n \n h-c-grid__col\n \ h-c-grid__col--6 h-c-grid__col--offset-3\n \n \n \"\n \ >\n\n \n \n \n <img\n src=\"https://storage.googleapis.com/gweb-cloudblog-publish/images/2_NP4i0TM.max-1000x1000.png\"\n \ \n alt=\"figure 2\">\n \n </a>\n \n </figure>\n\n \ \n </div>\n </div>\n \n\n\n\n\n</div>\n<div class=\"block-paragraph\"><p data-block-key=\"s1awi\">Subscribers of that clean room cannot query your shared data once the privacy budget is exhausted.</p></div>\n<div class=\"block-image_full_width\">\n\n\n\n\n\n\n \ \n <div class=\"article-module h-c-page\">\n <div class=\"h-c-grid\">\n \ \n\n <figure class=\"article-image--large\n \n \n h-c-grid__col\n \ h-c-grid__col--6 h-c-grid__col--offset-3\n \n \n \"\n \ >\n\n \n \n \n <img\n src=\"https://storage.googleapis.com/gweb-cloudblog-publish/original_images/3_gO4XfWR.png\"\n \ \n alt=\"figure 3\">\n \n </a>\n \n </figure>\n\n \ \n </div>\n </div>\n \n\n\n\n\n</div>\n<div class=\"block-paragraph_advanced\"><h3><strong style=\"vertical-align: baseline;\">Get started with BigQuery differential privacy</strong></h3>\n<p><span style=\"vertical-align: baseline;\">BigQuery differential privacy is configured when a data owner or contributor shares data in a BigQuery data clean room. A data owner or contributor can share data using any compute pricing model and does not incur compute charges when a subscriber queries that data. Subscribers of a data clean room incur compute charges when querying shared data that is protected with a differential privacy analysis rule. Those subscribers are required to use on-demand pricing (charged per TB) or the </span><a href=\"https://cloud.google.com/bigquery/docs/editions-intro\"><span style=\"text-decoration: underline; vertical-align: baseline;\">Enterprise Plus edition</span></a><span style=\"vertical-align: baseline;\"> (charged per slot hour).</span></p>\n<p><span style=\"vertical-align: baseline;\">Create a </span><a href=\"https://pantheon.corp.google.com/bigquery/analytics-hub/exchanges\" rel=\"noopener\" target=\"_blank\"><span style=\"text-decoration: underline; vertical-align: baseline;\">clean room where all queries are protected with differential privacy </span></a><span style=\"vertical-align: baseline;\">today and </span><a href=\"https://issuetracker.google.com/issues/new?component=187149&template=1162659&pli=1\" rel=\"noopener\" target=\"_blank\"><span style=\"text-decoration: underline; vertical-align: baseline;\">let us know</span></a><span style=\"vertical-align: baseline;\"> where you need help.</span></p></div>\n<div class=\"block-related_article_tout\">\n\n\n\n\n\n<div class=\"uni-related-article-tout h-c-page\">\n <section class=\"h-c-grid\">\n <a href=\"https://cloud.google.com/blog/products/data-analytics/bigquery-data-clean-rooms-now-generally-available/\"\n \ data-analytics='{\n \"event\": \"page interaction\",\n \ \"category\": \"article lead\",\n \"action\": \"related article - inline\",\n \"label\": \"article: {slug}\"\n \ }'\n class=\"uni-related-article-tout__wrapper h-c-grid__col h-c-grid__col--8 h-c-grid__col-m--6 h-c-grid__col-l--6\n h-c-grid__col--offset-2 h-c-grid__col-m--offset-3 h-c-grid__col-l--offset-3 uni-click-tracker\">\n <div class=\"uni-related-article-tout__inner-wrapper\">\n <p class=\"uni-related-article-tout__eyebrow h-c-eyebrow\">Related Article</p>\n\n <div class=\"uni-related-article-tout__content-wrapper\">\n \ <div class=\"uni-related-article-tout__image-wrapper\">\n <div class=\"uni-related-article-tout__image\" style=\"background-image: url('')\"></div>\n \ </div>\n <div class=\"uni-related-article-tout__content\">\n \ <h4 class=\"uni-related-article-tout__header h-has-bottom-margin\">Privacy-preserving data sharing now generally available with BigQuery data clean rooms</h4>\n <p class=\"uni-related-article-tout__body\">Now GA, BigQuery data clean rooms has a new data contributor and subscriber experience, join restrictions, new analysis rules, usage metr...</p>\n <div class=\"cta module-cta h-c-copy uni-related-article-tout__cta muted\">\n <span class=\"nowrap\">Read Article\n <svg class=\"icon h-c-icon\" role=\"presentation\">\n <use xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"#mi-arrow-forward\"></use>\n </svg>\n </span>\n \ </div>\n </div>\n </div>\n </div>\n </a>\n </section>\n</div>\n\n</div>" rss_fields: - title - url - summary - author - categories - published - entry_id url: https://cloud.google.com/blog/products/data-analytics/differential-privacy-enforcement-in-bigquery-data-clean-rooms/ author: Magda Gianola
Language
Active
Ricc internal notes
Imported via /Users/ricc/git/gemini-news-crawler/webapp/db/seeds.d/import-feedjira.rb on 2024-04-06 22:19:53 +0200. Content is EMPTY here. Entried: title,url,summary,author,categories,published,entry_id. TODO add Newspaper: filename = /Users/ricc/git/gemini-news-crawler/webapp/db/seeds.d/../../../crawler/out/feedjira/Technology/Google Cloud Blog/2024-04-05-Get_started_with_differential_privacy_and_privacy_budgeting_in_B-v2.yaml
Ricc source
Show this article
Back to articles